Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834145

RESUMO

Chlorophyll is an indispensable photoreceptor in plant photosynthesis. Its anabolic imbalance is detrimental to individual growth and development. As an essential epigenetic modification, DNA methylation can induce phenotypic variations, such as leaf color transformation, by regulating gene expression. Albino line XN1376B is a natural mutation of winter wheat cultivar XN1376; however, the regulatory mechanism of its albinism is still unclear. In this study, we found that low temperatures induced albinism in XN1376B. The number of chloroplasts decreased as the phenomenon of bleaching intensified and the fence tissue and sponge tissue slowly dissolved. We identified six distinct TaPOR (protochlorophyllide oxidoreductase) genes in the wheat genome, and TaPOR2D was deemed to be related to the phenomenon of albinism based on the expression in different color leaves (green leaves, white leaves and returned green leaves) and the analysis of promoters' cis-acting elements. TaPOR2D was localized to chloroplasts. TaPOR2D overexpression (TaPOR2D-OE) enhanced the chlorophyll significantly in Arabidopsis, especially at two weeks; the amount of chlorophyll was 6.46 mg/L higher than in WT. The methylation rate of the TaPOR2D promoter in low-temperature albino leaves is as high as 93%, whereas there was no methylation in green leaves. Correspondingly, three DNA methyltransferase genes (TaMET1, TaDRM and TaCMT) were up-regulated in white leaves. Our study clarified that the expression of TaPOR2D is associated with its promoter methylation at a low temperature; it affects the level of chlorophyll accumulation, which probably causes the abnormal development of plant chloroplasts in albino wheat XN1376B. The results provide a theoretical basis for in-depth analysis of the regulation of development of plant chloroplasts and color variation in wheat XN1376B leaves.


Assuntos
Albinismo , Arabidopsis , Clorofila/metabolismo , Triticum/metabolismo , Temperatura , Fotossíntese/genética , Metilação de DNA , Arabidopsis/metabolismo , Albinismo/genética , Albinismo/metabolismo , Folhas de Planta/metabolismo
2.
Sci Rep ; 13(1): 17173, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821525

RESUMO

L-DOPA is deficient in the developing albino eye, resulting in abnormalities of retinal development and visual impairment. Ongoing retinal development after birth has also been demonstrated in the developing albino eye offering a potential therapeutic window in humans. To study whether human equivalent doses of L-DOPA/Carbidopa administered during the crucial postnatal period of neuroplasticity can rescue visual function, OCA C57BL/6 J-c2J OCA1 mice were treated with a 28-day course of oral L-DOPA/Carbidopa at 3 different doses from 15 to 43 days postnatal age (PNA) and for 3 different lengths of treatment, to identify optimum dosage and treatment length. Visual electrophysiology, acuity, and retinal morphology were measured at 4, 5, 6, 12 and 16 weeks PNA and compared to untreated C57BL/6 J (WT) and OCA1 mice. Quantification of PEDF, ßIII-tubulin and syntaxin-3 expression was also performed. Our data showed impaired retinal morphology, decreased retinal function and lower visual acuity in untreated OCA1 mice compared to WT mice. These changes were diminished or eliminated when treated with higher doses of L-DOPA/Carbidopa. Our results demonstrate that oral L-DOPA/Carbidopa supplementation at human equivalent doses during the postnatal critical period of retinal neuroplasticity can rescue visual retinal morphology and retinal function, via PEDF upregulation and modulation of retinal synaptogenesis, providing a further step towards developing an effective treatment for albinism patients.


Assuntos
Albinismo , Levodopa , Humanos , Camundongos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Carbidopa/farmacologia , Carbidopa/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Albinismo/metabolismo
3.
Neuron ; 111(1): 49-64.e5, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36351424

RESUMO

In albinism, aberrations in the ipsi-/contralateral retinal ganglion cell (RGC) ratio compromise the functional integrity of the binocular circuit. Here, we focus on the mouse ciliary margin zone (CMZ), a neurogenic niche at the embryonic peripheral retina, to investigate developmental processes regulating RGC neurogenesis and identity acquisition. We found that the mouse ventral CMZ generates predominantly ipsilaterally projecting RGCs, but this output is altered in the albino visual system because of CyclinD2 downregulation and disturbed timing of the cell cycle. Consequently, albino as well as CyclinD2-deficient pigmented mice exhibit diminished ipsilateral retinogeniculate projection and poor depth perception. In albino mice, pharmacological stimulation of calcium channels, known to upregulate CyclinD2 in other cell types, augmented CyclinD2-dependent neurogenesis of ipsilateral RGCs and improved stereopsis. Together, these results implicate CMZ neurogenesis and its regulators as critical for the formation and function of the mammalian binocular circuit.


Assuntos
Albinismo , Retina , Animais , Camundongos , Albinismo/metabolismo , Divisão Celular , Mamíferos , Neurogênese/fisiologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Vias Visuais
4.
Front Endocrinol (Lausanne) ; 13: 1053732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518250

RESUMO

Background: Pigment regression is an intriguing phenomenon that can be caused by disorders in melanin metabolism or endocrine regulation, or by autoimmune disorders. Albino animals serve as excellent models for the study of the genetic determination of morphology, particularly the evolution of and molecular mechanisms underlying chromatophore-related diseases in animals and humans. Material and Methods: The artificial culture of Andrias davidianus, the largest extant amphibian, is flourishing in China due to the great ecological and economic value of this animal. Approximately 0.1% of individuals express an albino phenotype accompanied by delayed somatic growth and mortality at early developmental stages. In this study, brain and skin transcriptomics were conducted to study the underlying molecular basis of the phenotype. Results: The results indicated decreased transcription of genes of melanin synthesis. Interestingly, MHC I isotypes and immune-related pathways accounted for the primary transcriptional differences between groups, suggesting that the albino phenotype represents a systematic immune problem to a far greater extent than a pigmentation defect. Albino individuals exhibited shifted transcription of MHC I isotypes, and the albino-specific isotype was characterized by increased charges and decreased space in the antigen- binding pocket, implying a drastic change in antigen specificity and a potential risk of autoimmune disorders. Conclusion: These results suggest an association between the albino phenotype and MHC I variants in A. davidianus, which could serve as a convenient model for vitiligo or other autoimmune diseases.


Assuntos
Albinismo , Doenças Autoimunes , Humanos , Animais , Melaninas , Albinismo/genética , Albinismo/metabolismo , Pigmentação/genética , Anfíbios
5.
Transl Vis Sci Technol ; 11(10): 37, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36301553

RESUMO

Purpose: Complement alternative pathway (AP) dysregulation has been implicated in geographic atrophy, an advanced form of age-related macular degeneration. Danicopan is an investigational, first-in-class inhibitor of factor D, an essential AP activation enzyme. We assessed danicopan distribution to the posterior segment of the eye after oral dosing. Methods: Tissue distribution of drug-derived radioactivity was evaluated using whole-body autoradiography following oral administration of [14C]-danicopan to pigmented and albino rats. Pharmacokinetics and ocular tissue distribution were studied in pigmented and albino rabbits following single and multiple oral dosing of danicopan. The melanin binding property was characterized in vitro. Results: Radioactivity was distributed widely in rats and became nonquantifiable in most tissues 24 hours postdose except in the pigmented rat uvea (quantifiable 672 hours postdose). Danicopan binding to melanin was established in vitro. After single dosing, the maximum concentration (Cmax) and area under the curve (AUC) in neural retina and plasma were similar in both rabbit types. After multiple dosing, AUC in neural retina was 3.4-fold higher versus plasma in pigmented rabbits. Drug levels in choroid/Bruch's membrane (BrM)/retinal pigment epithelium (RPE) were similar to plasma in albino rabbits but higher in pigmented rabbits: Cmax and AUC were 2.9- and 23.8-fold higher versus plasma after single dosing and 5.8- and 62.7-fold higher after multiple dosing. In pigmented rabbits, ocular tissue exposures slowly declined over time but remained quantifiable 240 hours postdose. Conclusions: The results demonstrate that danicopan crosses the blood-retina barrier and binds melanin reversibly, leading to a higher and more sustained exposure in melanin-containing ocular tissues (choroid/BrM/RPE) and in the neural retina as compared to in plasma after repeated oral dosing in pigmented animals. Translational Relevance: These findings suggest that oral danicopan possesses potential for treating geographic atrophy because AP dysregulation in the posterior segment of the eye is reported to be involved in the disease pathogenesis.


Assuntos
Albinismo , Atrofia Geográfica , Animais , Albinismo/metabolismo , Fator D do Complemento/metabolismo , Atrofia Geográfica/metabolismo , Melaninas/metabolismo , Retina , Ratos
6.
BMC Genomics ; 23(1): 310, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439938

RESUMO

BACKGROUND: Leaf colour mutations are universally expressed at the seedling stage and are ideal materials for exploring the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in plants. RESULTS: In this research, we analysed the different degrees of albinism in apple (Malus domestica) seedlings, including white-leaf mutants (WM), piebald leaf mutants (PM), light-green leaf mutants (LM) and normal leaves (NL) using bisulfite sequencing (BS-seq) and RNA sequencing (RNA-seq). There were 61,755, 79,824, and 74,899 differentially methylated regions (DMRs) and 7566, 3660, and 3546 differentially expressed genes (DEGs) identified in the WM/NL, PM/NL and LM/NL comparisons, respectively. CONCLUSION: The analysis of the methylome and transcriptome showed that 9 DMR-associated DEGs were involved in the carotenoid metabolism and flavonoid biosynthesis pathway. The expression of different transcription factors (TFs) may also influence the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in apple leaf mutants. This study provides a new method for understanding the differences in the formation of apple seedlings with different degrees of albinism.


Assuntos
Albinismo , Malus , Albinismo/genética , Albinismo/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Epigenoma , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plântula/genética , Plântula/metabolismo , Transcriptoma
7.
Sci Rep ; 11(1): 20590, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663853

RESUMO

White chanterelles (Basidiomycota), lacking the orange pigments and apricot-like odour of typical chanterelles, were found recently in the Canadian provinces of Québec (QC) and Newfoundland & Labrador (NL). Our phylogenetic analyses confirmed the identification of all white chanterelles from NL and QC as Cantharellus enelensis; we name these forma acolodorus. We characterized carotenoid pigments, lipids, phenolics, and volatile compounds in these and related chanterelles. White mutants of C. enelensis lacked detectable ß-carotene, confirmed to be the primary pigment of wild-type, golden-orange individuals, and could also be distinguished by their profiles of fatty acids and phenolic acids, and by the ketone and terpene composition of their volatiles. We detected single base substitutions in the phytoene desaturase (Al-1) and phytoene synthase (Al-2) genes of the white mutant, which are predicted to result in altered amino acids in their gene products and may be responsible for the loss of ß-carotene synthesis in that form.


Assuntos
Basidiomycota/química , Albinismo/genética , Albinismo/metabolismo , Basidiomycota/metabolismo , Oxirredutases/química , Fenóis/química , Filogenia , Pigmentação , beta Caroteno/metabolismo
8.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165242

RESUMO

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Assuntos
Albinismo/terapia , Alcaptonúria/terapia , Cistinúria/terapia , Erros Inatos do Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Cistinúria/genética , Cistinúria/metabolismo , Cistinúria/patologia , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Fenilcetonúrias/terapia , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/genética , Xilulose/metabolismo
9.
Genes Cells ; 26(1): 31-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33147376

RESUMO

The periodic albino mutant of Xenopus laevis is a recessive mutant, in which reduced amounts of melanin appear in the retinal pigment epithelium (RPE) and in melanophores at the late embryonic stage, after which both RPE and melanophores gradually depigment. Three types of pigment cells (melanophores, iridophores and xanthophores) have been reported to be affected in this albino. However, the causative gene of the periodic albinism remains unknown. Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder that affects humans and mice, which is caused by defective biogenesis of lysosome-related organelles (LROs). Two subgenomes (L and S) are present in the allotetraploid frog X. laevis. Comparison of genes between the chromosomes 1L and 1S revealed that the HPS type 4 (hps4) gene was present only in chromosome 1L. In the albino mutant, a 1.9 kb genomic deletion in the hps4.L gene including exons 7 and 8 caused a premature stop codon to create a truncated Hps4 protein. Injection of wild-type hps4.L mRNA into mutant embryos rescued the albino phenotype. These findings indicate that hps4 is a causative gene for the periodic albinism in X. laevis. The phenotype of this mutant should be reassessed from the perspective of LRO biogenesis.


Assuntos
Albinismo/genética , Deleção de Genes , Proteínas de Xenopus/genética , Albinismo/metabolismo , Animais , Éxons , Poliploidia , Xenopus laevis
10.
Am J Hum Genet ; 104(6): 1127-1138, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31155284

RESUMO

Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.


Assuntos
Ácidos/química , Albinismo/etiologia , Canais de Cloreto/genética , Fibroblastos/patologia , Variação Genética , Doenças por Armazenamento dos Lisossomos/etiologia , Lisossomos/metabolismo , Albinismo/metabolismo , Albinismo/patologia , Animais , Canais de Cloreto/fisiologia , Feminino , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Camundongos , Oócitos/metabolismo , Xenopus laevis
11.
Exp Anim ; 68(1): 49-56, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30101816

RESUMO

A relationship between coat color and behavioral characteristics has been reported for numerous species. We previously indicated that particular behavioral traits contributing to the genotype at the agouti locus manifest only when possessing a wild-type allele at the albino (i.e., tyrosinase: Tyr) locus. The present study was performed to investigate tyrosinase expression with marked activity in central nervous systems. The whole brain of male B10 and B10-c mice, a B10 congenic strain of the albino locus from BALB/c, at 8 to 9 weeks of age was removed, and obtained several regions of brain, especially catecholaminergic. Comparatively large amounts of Tyr mRNA and its translation products of approximately 68 kDa were found in the regions obtained, and definitely possessed the enzyme activity for the oxidation of L-tyrosine. The present results indicate the possibility that the amount of catecholamines produced in albino mice is higher than that of colored mice due to the deficit in tyrosinase heritably.


Assuntos
Albinismo/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Catecolaminas/metabolismo , Cor de Cabelo/genética , Monofenol Mono-Oxigenase/metabolismo , Característica Quantitativa Herdável , Albinismo/genética , Alelos , Animais , Expressão Gênica , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monofenol Mono-Oxigenase/genética , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Sci Rep ; 8(1): 13366, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190522

RESUMO

The CRISPR/Cas9 system can be introduced into zebrafish as transgenes. Namely, expression of single-guide RNA (sgRNA) and controlled expression of Cas9 in transgenic zebrafish enables the study of gene functions in specific cell types. This transgenic CRISPR/Cas9 approach would be more useful if multiple sgRNAs could be expressed simultaneously since we could knock-out a gene more efficiently or disrupt multiple genes simultaneously. Here we describe a novel system to express multiple sgRNAs efficiently in zebrafish, that relies on the endogenous tRNA processing machinery. We cloned nine endogenous zebrafish tRNA genes, fused them to sgRNAs, and demonstrated that an active sgRNA can be produced from a precursor transcript containing either of these tRNAs. To show a proof of principle, we constructed transgenic fish expressing Cas9 under the control of the ubiquitin promoter and a single transcript containing three distinct sgRNAs, that targeted the slc45a2 (albino) gene, fused to tRNAs under the control of the U6 promoter. We found that the Tg(ubb:SpCas9,u6c:3xslc45a2-sgRNA) harbored mutations in all of the target sites in the albino gene and showed nearly complete albino phenotypes, which were amenable to imaging experiments. Thus, the tRNA-based multiplex sgRNA expression system should facilitate gene knock-out studies in transgenic zebrafish.


Assuntos
Albinismo , Animais Geneticamente Modificados , Fenótipo , RNA de Transferência , Peixe-Zebra , Albinismo/genética , Albinismo/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Sistemas CRISPR-Cas , RNA de Transferência/genética , RNA de Transferência/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Adv Exp Med Biol ; 1074: 395-401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721969

RESUMO

Retinaldehyde adducts (bisretinoids) accumulate in retinal pigment epithelial (RPE) cells as lipofuscin. Bisretinoids are implicated in some inherited and age-related forms of macular degeneration that lead to the death of RPE cells and diminished vision. By comparing albino and black-eyed mice and by rearing mice in darkness and in cyclic light, evidence indicates that bisretinoid fluorophores undergo photodegradation in the eye (Ueda et al. Proc Natl Acad Sci 113:6904-6909, 2016). Given that the photodegradation products modify and impair cellular and extracellular molecules, these processes likely impart cumulative damage to retina.


Assuntos
Cor de Olho , Lipofuscina/efeitos da radiação , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Albinismo/metabolismo , Albinismo/patologia , Aminas/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Escuridão , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Luz , Lipofuscina/metabolismo , Degeneração Macular/congênito , Degeneração Macular/etiologia , Degeneração Macular/genética , Degeneração Macular/prevenção & controle , Melanose/metabolismo , Melanose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fotoquímica , Retinaldeído/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Doença de Stargardt , Vitamina E/farmacologia , Vitamina E/uso terapêutico
15.
Dev Biol ; 441(2): 313-318, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29555241

RESUMO

Understanding the genetic basis of trait evolution is critical to identifying the mechanisms that generated the immense amount of diversity observable in the living world. However, genetically manipulating organisms from natural populations with evolutionary adaptations remains a significant challenge. Astyanax mexicanus exists in two interfertile forms, a surface-dwelling form and multiple independently evolved cave-dwelling forms. Cavefish have evolved a number of morphological and behavioral traits and multiple quantitative trait loci (QTL) analyses have been performed to identify loci underlying these traits. These studies provide a unique opportunity to identify and test candidate genes for these cave-specific traits. We have leveraged the CRISPR/Cas9 genome editing techniques to characterize the effects of mutations in oculocutaneous albinism II (oca2), a candidate gene hypothesized to be responsible for the evolution of albinism in A. mexicanus cave populations. We generated oca2 mutant surface A. mexicanus. Surface fish with oca2 mutations are albino due to a disruption in the first step of the melanin synthesis pathway, the same step that is disrupted in albino cavefish. Hybrid offspring from crosses between oca2 mutant surface and cavefish are albino, definitively demonstrating the role of this gene in the evolution of albinism in this species. This research elucidates the role oca2 plays in pigmentation in fish, and establishes that this gene is solely responsible for the evolution of albinism in multiple cavefish populations. Finally, it demonstrates the utility of using genome editing to investigate the genetic basis of trait evolution.


Assuntos
Sistemas CRISPR-Cas , Caraciformes/genética , Proteínas de Peixes/genética , Edição de Genes , Melatonina/genética , Proteínas de Membrana Transportadoras/genética , Pigmentação/genética , Albinismo/genética , Albinismo/metabolismo , Animais , Caraciformes/metabolismo , Proteínas de Peixes/metabolismo , Melatonina/biossíntese , Proteínas de Membrana Transportadoras/metabolismo
16.
Fish Physiol Biochem ; 43(6): 1477-1486, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28698966

RESUMO

In order to provide an applicable cell platform to study fish pathology and skin pigmentation, two cell lines derived from skin tissues of wild-type and albino Japanese flounder were established and named JFSK_wt and JFSK_alb, respectively. These two cell lines were cultured for 45 passages within approximately 300 days. JFSK_wt and JFSK_alb cells were maintained in Dulbecco's Modified Eagle's Medium and Ham's F-12 Nutrient Mixture (DMEM/F12) supplemented with antibiotics, fetal bovine serum (FBS), 2-mercaptoethanol (2-Me), N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), and basic fibroblast growth factor (bFGF). The optimal growth temperature for JFSK_wt and JFSK_alb cells was 24 °C, and microscopically, the two cell lines were composed of fibroblast-like cells. Chromosomal analysis revealed that JFSK_wt and JFSK_alb cells had an identical diploid karyotype with 2n = 48t. Results of viral inoculation assays revealed that both cell lines shared similar patterns of viral susceptibility to nervous necrosis virus (NNV). High transfection efficiency was observed in JFSK_wt and JFSK_alb cells transfected with a pEGFP-N3 reporter plasmid and Cy3-siRNA. The detection of dermal marker Dermo-1 showed that these two cells were both derived from the dermis. Finally, three genes involved in the melanogenesis pathway, including adenylate cyclase type 5 (adcy5), microphthalmia-associated transcription factor (mitf), and endothelin B receptor (ednrb), were downregulated in JFSK_alb versus JFSK_wt cells. Thus, the two cell lines, sampled from skin tissue of wild-type and albino Japanese flounder will be not only helpful for fish pathogen research but also beneficial for albinism-related gene function studies.


Assuntos
Albinismo/metabolismo , Linguado/fisiologia , Pele/citologia , Cultura de Vírus , Animais , Linhagem Celular , Meios de Cultura , Nodaviridae/fisiologia
17.
Sci Rep ; 7(1): 1873, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500349

RESUMO

Lysine succinylation is a novel dynamic and evolutionarily conserved post-translational modification (PTM) that regulates various biological processes. 'Anji Baicha' is an albino tea variety that exhibits temperature-based variability of leaf colour and amino acid concentrations. However, the mechanism underlying albinism in 'Anji Baicha' has not been investigated at the level of succinylation. Here, we identify 3530 lysine succinylation sites mapped to 2132 proteins in 'Anji Baicha', representing the first extensive data on the lysine succinylome in the tea plant. Eleven conserved succinylation motifs were enriched among the identified succinylated peptides. The protein-protein interaction maps were visualized using Cytoscape software. Comparison across three typical developmental stages of 'Anji Baicha' revealed that proteins exhibiting differential succinylation levels were primarily involved in photosynthesis, carbon fixation, biosynthesis of amino acids and porphyrin and chlorophyll metabolism, suggesting that these succinylated proteins are involved in 'Anji Baicha' leaf colour variability. These results not only deepen our understanding of the mechanism underlying 'Anji Baicha' albinism and the regulatory role of succinylation in the tea plant but also provide new insight into molecular breeding for leaf colour variety.


Assuntos
Albinismo/metabolismo , Camellia sinensis/metabolismo , Proteoma , Proteômica , Motivos de Aminoácidos , Sequência de Aminoácidos , Camellia sinensis/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Lisina/química , Anotação de Sequência Molecular , Fenótipo , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica/métodos
18.
Blood ; 127(14): 1731, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056989

RESUMO

This landmark article by Frantisek Hermansky and Paulus Pudlak, clinicians in Prague, Czechoslovakia, is the first to describe 2 unrelated individuals with what is now called Hermansky-Pudlak syndrome, a bleeding disorder that occurs in association with oculocutaneous albinism. The definition of this syndrome resulted not only in improved care of these patients but also in a functional and molecular understanding of the disease and the role of dense granule secretion in platelet function. Hermansky-Pudlak syndrome is now known to be related to defective dense granule biogenesis due to mutations in any of ≥9 different genes.


Assuntos
Albinismo/patologia , Células da Medula Óssea/patologia , Transtornos Hemorrágicos/patologia , Nistagmo Congênito/patologia , Pigmentação , Adulto , Albinismo/complicações , Albinismo/metabolismo , Células da Medula Óssea/metabolismo , Feminino , Transtornos Hemorrágicos/complicações , Transtornos Hemorrágicos/metabolismo , Humanos , Masculino , Nistagmo Congênito/metabolismo
19.
J Comp Neurol ; 524(18): 3696-3716, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27097562

RESUMO

In the developing murine eye, melanin synthesis in the retinal pigment epithelium (RPE) coincides with neurogenesis of retinal ganglion cells (RGCs). Disruption of pigmentation in the albino RPE is associated with delayed neurogenesis in the ventrotemporal retina, the source of ipsilateral RGCs, and a reduced ipsilateral RGC projection. To begin to unravel how melanogenesis and the RPE regulate RGC neurogenesis and cell subpopulation specification, we compared the features of albino and pigmented mouse RPE cells during the period of RGC neurogenesis (embryonic day, E, 12.5 to 18.5) when the RPE is closely apposed to developing RGC precursors. At E12.5 and E15.5, although albino and pigmented RPE cells express RPE markers Otx2 and Mitf similarly, albino RPE cells are irregularly shaped and have fewer melanosomes compared with pigmented RPE cells. The adherens junction protein P-cadherin appears loosely distributed within the albino RPE cells rather than tightly localized on the cell membrane, as in pigmented RPE. Connexin 43 (gap junction protein) is expressed in pigmented and albino RPE cells at E13.5 but at E15.5 albino RPE cells have fewer small connexin 43 puncta, and a larger fraction of phosphorylated connexin 43 at serine 368. These results suggest that the lack of pigment in the RPE results in impaired RPE cell integrity and communication via gap junctions between RPE and neural retina during RGC neurogenesis. Our findings should pave the way for further investigation of the role of RPE in regulating RGC development toward achieving proper RGC axon decussation. J. Comp. Neurol. 524:3696-3716, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Albinismo/metabolismo , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/metabolismo , Albinismo/patologia , Animais , Western Blotting , Conexina 43/metabolismo , Imuno-Histoquímica , Melanossomas/metabolismo , Melanossomas/ultraestrutura , Camundongos Transgênicos , Microscopia Eletrônica , Modelos Animais , Fosforilação , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA